Abbot R, Counselman C (1987) Demonstration of GPS orbit determination enhancement by resolution of carrier phase ambiguity. Eos Trans AGU 68:1238
Aggrey JE (2015) Multi-GNSS precise point positioning software architecture and analysis of GLONASS pseudorange biases. MSc Thesis, York University
Anderson JM, Mikhail EM, Anderson J (1998) Surveying: Theory and practice. WCB/McGraw-Hill Boston
Banville S (2014) Improved convergence for GNSS Precise Point Positioning. PhD Thesis, University of New Brunswick
Banville S (2016a) Unified PPP-AR Processing. In: Blackdot GNSS. https://www.blackdotgnss.com/2016/11/06/unified-ppp-ar-processing/. Accessed 20 Nov 2016
Banville S (2016b) GLONASS ionosphere-free ambiguity resolution for precise point positioning. Journal of Geodesy. doi: 10.1007/s00190-016-0888-7
Banville S, Collins P, Lahaye F (2013) GLONASS ambiguity resolution of mixed receiver types without external calibration. GPS Solutions 17:275–282. doi: 10.1007/s10291-013-0319-7
Banville S, Collins P, Zhang W, Langley RB (2014) Global and regional ionospheric corrections for faster PPP convergence. Navigation 61:115–124
Bar-Sever YE (1996) A new model for GPS yaw attitude. Journal of Geodesy 70:714–723
Bertiger W, Desai SD, Haines B, et al (2010) Single receiver phase ambiguity resolution with GPS data. Journal of Geodesy 84:327–337. doi: 10.1007/s00190-010-0371-9
Beutler G, Kouba J, Springer T (1995) Combining the orbits of the IGS Analysis Centers. Bulletin Geodesique 69:200–222
Beutler G, Rothacher M, Schaer S, et al (1999) The International GPS Service (IGS): an interdisciplinary service in support of earth sciences. Advances in Space Research 23:631–653
Bisnath S, Aggrey J, Seepersad G, Gill M (2018) Innovation: Examining precise point positioning now and in the future. GPS World. March.
Bisnath S, Collins P (2012) Recent developments in precise point positioning. Geomatica 66:103–111
Bisnath S, Gao Y (2009) Current state of precise point positioning and future prospects and limitations. In: Observing our changing earth. Springer, pp 615–623
Blewitt G (1989) Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km. Journal of Geophysical Research: Solid Earth 94:10187–10203
Bock Y, Abbot RI, Counselman CC, et al (1985) Establishment of three-dimensional geodetic control by interferometry with the Global Positioning System. Journal of Geophysical Research: Solid Earth 90:7689–7703
Bock Y, Gourevitch SA, Counselman III CC, et al (1986) Interferometric analysis of GPS phase observations. Manuscripta geodaetica 11:282–288
Bock Y, Nikolaidis RM, Jonge PJ, Bevis M (2000) Instantaneous geodetic positioning at medium distances with the Global Positioning System. Journal of Geophysical Research: Solid Earth (1978–2012) 105:28223–28253
Britting KR (1971) Inertial Navigation Systems Analysis. Artech House
Cai C, Gao Y (2007) Precise point positioning using combined GPS and GLONASS observations. Journal of Global Positioning System 6:13–22
Cai C, Gao Y (2013) Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solutions 17:223–236. doi: 10.1007/s10291-012-0273-9
Caissy M, Agrotis L, Weber G, et al (2012) The International GNSS Real-Time Service. In: GPS World. http://gpsworld.com/gnss-systemaugmentation-assistanceinnovation-coming-soon-13044/. Accessed 8 Aug 2016
Center for Orbit Determination in Europe (2016) Differential Code Biases (DCB). In: Astronomical Institute. http://www.aiub.unibe.ch/research/code___analysis_center/differential_code_biases_dcb/index_eng.html. Accessed 3 Feb 2016
Chang XW, Yang X, Zhou T (2005) MLAMBDA: a modified LAMBDA method for integer least-squares estimation. Journal of Geodesy 79:552–565
Chen L, Song W, Yi W, et al (2016) Research on a method of real-time combination of precise GPS clock corrections. GPS Solutions. doi: 10.1007/s10291-016-0515-3
Choy S, Zhang S, Lahaye F, Héroux P (2013) A comparison between GPS-only and combined GPS+GLONASS Precise Point Positioning. Journal of Spatial Science 58:169–190. doi: 10.1080/14498596.2013.808164
Chuang S, Wenting Y, Weiwei S, et al (2013) GLONASS pseudorange inter-channel biases and their effects on combined GPS/GLONASS precise point positioning. GPS Solutions 17:439–451. doi: 10.1007/s10291-013-0332-x
CNES (2015) Le site du Centre national d’études spatiales. https://cnes.fr/
Cocard M, Bourgon S, Kamali O, Collins P (2008) A systematic investigation of optimal carrier-phase combinations for modernized triple-frequency GPS. Journal of Geodesy 82:555–564
Collins JP (1999a) Assessment and development of a tropospheric delay model for aircraft users of the global positioning system. MSc Thesis, University of New Brunswick
Collins P (2008) Isolating and estimating undifferenced GPS integer ambiguities. In: Proc. ION NTM. pp 720–732
Collins P (1999b) An overview of GPS interfrequency carrier phase combinations. Geodesy and Geomatics Engineering Report, University of New Brunswick
Collins P, Bisnath S (2011) Issues in ambiguity resolution for Precise Point Positioning. In: Proceedings of the 24th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2011). pp 679–687
Collins P, Bisnath S, Lahaye F, Héroux P (2010) Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing. Navigation 57:123–135
Collins P, Lahaye F, Bisnath S (2012) External ionospheric constraints for improved PPP-AR initialisation and a generalised local augmentation concept. In: Proceedings of the 25th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2012). pp 3055–3065
Collins P, Lahaye F, Heroux P, Bisnath S (2008) Precise point positioning with ambiguity resolution using the decoupled clock model. In: Proceedings of the 21st international technical meeting of the satellite division of the Institute of Navigation (ION GNSS 2008). pp 1315–1322
CSNO TARC (2018) System basic information. In: China Satellite Navigation System Management Office Test Assessment Research Center : Test and Assessment Research Center of China Satellite Navigation Office. http://www.csno-tarc.cn/system/basicinfo. Accessed 12 Jun 2018
De Bakker PF (2016) On User Algorithms for GNSS Precise Point Positioning. TU Delft, Delft University of Technology
De Jonge P, Tiberius C (1996) The LAMBDA method for integer ambiguity estimation: implementation aspects. Publications of the Delft Computing Centre, LGR-Series 12:1–47
Defraigne P, Baire Q (2011) Combining GPS and GLONASS for time and frequency transfer. Advances in Space Research 47:265–275. doi: 10.1016/j.asr.2010.07.003
Dilssner F (2010) GPS IIF-1 satellite antenna phase center and attitude modeling. Inside GNSS 5:59–64
Dilssner F, Springer T, Gienger G, Dow J (2011) The GLONASS-M satellite yaw-attitude model. Advances in Space Research 47:160–171. doi: 10.1016/j.asr.2010.09.007
Donahue B, Wentzel J, Berg R (2013) Guidelines for RTK/RTN GNSS surveying in Canada. Version 1.1. Canada. Natural Resources Canada. Geological Survey of Canada.
Dong D-N, Bock Y (1989) Global Positioning System network analysis with phase ambiguity resolution applied to crustal deformation studies in California. Journal of Geophysical Research: Solid Earth 94:3949–3966
Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. Journal of geodesy 83:191–198
Euler H-J, Schaffrin B (1991) On a measure for the discernibility between different ambiguity solutions in the static-kinematic GPS-mode. In: Kinematic Systems in Geodesy, Surveying, and Remote Sensing. Springer, pp 285–295
European GNSS Agency (2015) Report on the Performance and Level of Integrity for Safety and Liability Critical Multi-Applications. https://www.gsa.europa.eu/sites/default/files/calls_for_proposals/Annex%202.pdf
Feng S, Ochieng W, Samson J, et al (2012) Integrity Monitoring for Carrier Phase Ambiguities. Journal of Navigation 65:41–58. doi: 10.1017/S037346331100052X
Feng Y (2008) GNSS three carrier ambiguity resolution using ionosphere-reduced virtual signals. Journal of Geodesy 82:847–862
Ferland R, Kouba J, Hutchison D (2000) Analysis methodology and recent results of the IGS network combination. Earth, planets and space 52:953–957
Forssell B, Martin-Neira M, Harris R (1997) Carrier phase ambiguity resolution in GNSS-2. In: Proceedings of the 10th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1997). pp 1727–1736
Gabor MJ, Nerem RS (2002) Satellite–Satellite Single-Difference Phase Bias Calibration As Applied to Ambiguity Resolution. Navigation 49:223–242
Ge M, Douša J, Li X, et al (2012) A Novel Real-time Precise Positioning Service System: Global Precise Point Positioning With Regional Augmentation. Journal of Global Positioning Systems 11:2–10. doi: 10.5081/jgps.11.1.2
Ge M, Gendt G, Rothacher M, et al (2008) Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. Journal of Geodesy 82:389–399. doi: 10.1007/s00190-007-0187-4
Geng J (2010) Rapid integer ambiguity resolution in GPS precise point positioning. PhD Thesis, University of Nottingham
Geng J, Bock Y (2013) Triple-frequency GPS precise point positioning with rapid ambiguity resolution. J Geod 87:449–460. doi: 10.1007/s00190-013-0619-2
Geng J, Bock Y (2016) GLONASS fractional-cycle bias estimation across inhomogeneous receivers for PPP ambiguity resolution. Journal of Geodesy 90:379–396. doi: 10.1007/s00190-015-0879-0
Geng J, Bock Y, Melgar D, et al (2013) A new seismogeodetic approach applied to GPS and accelerometer observations of the 2012 Brawley seismic swarm: Implications for earthquake early warning. Geochemistry, Geophysics, Geosystems 14:2124–2142. doi: 10.1002/ggge.20144
Geng J, Meng X, Dodson AH, Teferle FN (2010a) Integer ambiguity resolution in precise point positioning: method comparison. Journal of Geodesy 84:569–581. doi: 10.1007/s00190-010-0399-x
Geng J, Meng X, Teferle FN, Dodson AH (2010b) Performance of precise point positioning with ambiguity resolution for 1-to 4-hour observation periods. Survey Review 42:155–165
Geng J, Shi C (2017) Rapid initialization of real-time PPP by resolving undifferenced GPS and GLONASS ambiguities simultaneously. Journal of Geodesy 91:361–374. doi: 10.1007/s00190-016-0969-7
Geng J, Shi C, Ge M, et al (2012) Improving the estimation of fractional-cycle biases for ambiguity resolution in precise point positioning. Journal of Geodesy 86:579–589
Georgiadou Y, Kleusberg A (1988) On carrier signal multipath effects in relative GPS positioning. Manuscripta Geodaetica 13:172–179
Goad CC (1985) Precise relative position determination using Global Positioning System carrier phase measurements in a nondifference mode. In: First Int. Symp. on Positioning with the Global Positioning System, Rockville. pp 347–356
Grimes J (2007) Global Positioning System Precise Positioning Service Performance Standard. Department of Defense, United States of America
Han S (1997) Quality-control issues relating to instantaneous ambiguity resolution for real-time GPS kinematic positioning. Journal of Geodesy 71:351–361
Han S, Rizos C (1999) The impact of two additional civilian GPS frequencies on ambiguity resolution strategies. In: 55th National Meeting US Institute of Navigation," Navigational Technology for the 21st Century", Cambridge, Massachusetts. pp 28–30
Hatch R (2006) A new three-frequency, geometry-free technique for ambiguity resolution. In: Proceedings of ION GNSS. pp 26–29
Hauschild A, Montenbruck O (2014) A study on the dependency of GNSS pseudorange biases on correlator spacing. GPS Solutions. doi: 10.1007/s10291-014-0426-0
Henderson HV, Searle SR (1981) The vec-permutation matrix, the vec operator and Kronecker products: A review. Linear and multilinear algebra 9:271–288
Henkel P, Gomez V (2013) Partial ambiguity fixing for multi-frequency ionospheric delay estimation. Google Patents
Henkel P, Günther C (2010) Reliable integer ambiguity resolution with multi-frequency code carrier linear combinations. Journal of Global Positioning Systems 9:90–103
Héroux P, Kouba J (1995) GPS precise point positioning with a difference. Natural Resources Canada, Geomatics Canada, Geodetic Survey Division
Hofmann-Wellenhof B, Lichtenegger H, Collins J (1997) Global positioning system: theory and practice, 4., rev. ed. Springer, Wien
Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2007) GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer Science & Business Media
IGS (2013) IGS Quality of Service Fact Sheet. In: International GNSS Service. https://kb.igs.org/hc/en-us/articles/201208216-IGS-Quality-of-Service-Fact-Sheet
IGS (2018a) MGEX Product Analysis. In: International GNSS Service. http://mgex.igs.org/analysis/index.php
IGS (2007) IGS Frequently Asked Questions (FAQ). In: International GNSS Service. https://kb.igs.org/hc/en-us/articles/201142366-IGS-FAQ-May-2007
IGS (2018b) About. In: International GNSS Service. http://www.igs.org/about/analysis-centers
IMO (2001) Revised Maritime Policy and Requirements for future GNSS. In: Resolution A.915(22), London, United Kingdom
Jokinen A, Feng S, Schuster W, et al (2013a) Integrity monitoring of fixed ambiguity Precise Point Positioning (PPP) solutions. Geo-spatial Information Science 16:141–148. doi: 10.1080/10095020.2013.817111
Jokinen A, Feng S, Schuster W, et al (2013b) GLONASS Aided GPS Ambiguity Fixed Precise Point Positioning. Journal of Navigation 66:399–416. doi: 10.1017/S0373463313000052
JPL (2016). In: JPL GPS Products. ftp://sideshow.jpl.nasa.gov/pub/JPL_GPS_Products/Final/2016/. Accessed 6 Sep 2016
Jung J, Enge P, Pervan B (2000) Optimization of cascade integer resolution with three civil GPS frequencies. In: Proceedings of the 13th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2000). pp 19–20
Kamali O (2017) Enhanced Performance for GPS-PPP by Resolving Bias-free Ambiguities. PhD Thesis, Université Laval
Kaplan ED, Hegarty C (eds) (2006) Understanding GPS: principles and applications, 2nd ed. Artech House, Boston
Kee C, Parkinson BW, Axelrad P (1991) Wide area differential GPS. Navigation 38:123–145
Kouba J (2009) A simplified yaw-attitude model for eclipsing GPS satellites. GPS Solutions 13:1–12. doi: 10.1007/s10291-008-0092-1
Kouba J, Héroux P (2001) Precise point positioning using IGS orbit and clock products. GPS solutions 5:12–28
Kouba J, Springer T (2001) New IGS station and satellite clock combination. GPS Solutions 4:31–36
Kuang D, Desai S, Sibois A (2016) Observed features of GPS Block IIF satellite yaw maneuvers and corresponding modeling. GPS Solutions. doi: 10.1007/s10291-016-0562-9
Lannes A, Prieur J-L (2013) Calibration of the clock-phase biases of GNSS networks: the closure-ambiguity approach. Journal of Geodesy 87:709–731. doi: 10.1007/s00190-013-0641-4
Laurichesse D (2014) Phase biases for ambiguity resolution: from an undifferenced to an uncombined formulation. http://ppp-wizard.net/Articles/WhitePaperL5.pdf. Accessed 1 Jun 2015
Laurichesse D, Blot A (2016) Fast PPP Convergence Using Multi-Constellation and Triple-Frequency Ambiguity Resolution. In: Proceedings of the 29th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2016). pp 2082–2088
Laurichesse D, Mercier F (2007) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP. pp 839–848
Laurichesse D, Mercier F, Berthias J-P, et al (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation 56:135–149
Leandro RF (2009) Precise Point Positioning With GPS A New Approach For Positioning, Atmospheric Studies, And Signal. PhD Thesis, University of New Brunswick
Leick A (1995) GPS satellite surveying, 2nd ed. Wiley, New York
Leveson I (2006) Benefits of the new GPS civil signal. The L2C Study. Inside GNSS 1:42–47
Li B, Feng Y, Shen Y (2010) Three carrier ambiguity resolution: distance-independent performance demonstrated using semi-generated triple frequency GPS signals. GPS solutions 14:177–184
Li J, Yang Y, Xu J, et al (2012) Ionosphere-free combinations for triple-frequency GNSS with application in rapid ambiguity resolution over medium-long baselines. In: China Satellite Navigation Conference (CSNC) 2012 Proceedings. Springer, pp 173–187
Li P, Zhang X (2014) Integrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioning. GPS Solutions 18:461–471. doi: 10.1007/s10291-013-0345-5
Li P, Zhang X, Ren X, et al (2015) Generating GPS satellite fractional cycle bias for ambiguity-fixed precise point positioning. GPS Solutions. doi: 10.1007/s10291-015-0483-z
Li X (2012) Improving real-time PPP ambiguity resolution with ionospheric characteristic consideration. Proc of ION GNSS-12, Institute of Navigation, Nashville, Tennessee, September 17–21
Li X, Li X, Yuan Y, et al (2017) Multi-GNSS phase delay estimation and PPP ambiguity resolution: GPS, BDS, GLONASS, Galileo. Journal of Geodesy. doi: 10.1007/s00190-017-1081-3
Liu T, Yuan Y, Zhang B, et al (2017) Multi-GNSS precise point positioning (MGPPP) using raw observations. Journal of Geodesy 91:253–268. doi: 10.1007/s00190-016-0960-3
Lou Y, Zheng F, Gu S, et al (2016) Multi-GNSS precise point positioning with raw single-frequency and dual-frequency measurement models. GPS Solutions 20:849–862. doi: 10.1007/s10291-015-0495-8
Mervart L, Lukes Z, Rocken C, Iwabuchi T (2008) Precise Point Positioning with ambiguity resolution in real-time. In: Proceedings of ION GNSS. pp 397–405
Mervart L, Weber G (2011) Real-time combination of GNSS orbit and clock correction streams using a Kalman filter approach. In: Proceedings of the 24th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2011). pp 707–711
Mohammed J, Moore T, Hill C, et al (2016) An assessment of static precise point positioning using GPS only, GLONASS only, and GPS plus GLONASS. Measurement 88:121–130. doi: 10.1016/j.measurement.2016.03.048
Montenbruck O, Schmid R, Mercier F, et al (2015) GNSS satellite geometry and attitude models. Advances in Space Research 56:1015–1029. doi: 10.1016/j.asr.2015.06.019
NRCan (2015) Natural Resources Canada. https://www.nrcan.gc.ca. Accessed 19 Jun 2015
Ober P (1999) Towards High Integrity Positioning. In: ION GPS. pp 2113–2120
Ochieng WY, Sauer K, Walsh D, et al (2003) GPS integrity and potential impact on aviation safety. The journal of navigation 56:51–65
Odijk D (2002) Fast precise GPS positioning in the presence of ionospheric delays. PhD Thesis, Delft University of Technology
Parkinson BW, Axelrad P (1988) Autonomous GPS integrity monitoring using the pseudorange residual. Navigation 35:255–274
Petovello MG, Feng S, Ochieng W (2014) How do you trust centimeter level accuracy positioning? In: Inside GNSS. http://www.insidegnss.com/node/4201
Pham H (2006) System Reliability Concepts. In: System Software Reliability. Springer, pp 9–75
Porretta M, Banos DJ, Crisci M, et al (2016) GNSS evolution for maritime an incremental approach. In: Inside GNSS. http://insidegnss.com/auto/mayjune16-WP.pdf
Pullen S (2011) Augmented GNSS: Fundamentals and Keys to Integrity and Continuity. In: Tutorial Presentation, ION GNSS 2011, Portland, Oregon land, Oregon
Renfro BA, Stein M, Boeker N, Terry A (2018) An Analysis of Global Positioning System (GPS) Standard Positioning Service (SPS) Performance for 2017. In: GPS: The Global Positioning System. https://www.gps.gov/systems/gps/performance/2017-GPS-SPS-performance-analysis.pdf
Richert T, El-Sheimy N (2007) Optimal linear combinations of triple frequency carrier phase data from future global navigation satellite systems. GPS solutions 11:11–19
RTCA DO-181 (1983) Minimum Operational Performance Standards for Air Traffic Control Radar Beacon System/mode Select (ATCRBS/modes) Airborne Equipment. Radio Technical Commission for Aeronautics
Schaer S (2016) SINEX BIAS—Solution (Software/technique) INdependent EXchange Format for GNSS BIASes Version 1.00. Swisstopo/AIUB
Schaffrin B, Bock Y (1988) A unified scheme for processing GPS dual-band phase observations. Journal of geodesy 62:142–160
Scherneck H (2013) Ocean Tide Loading Provider. http://froste.oso.chalmers.se/loading//index.html. Accessed 2 Jan 2013
Schmitz M (2012) RTCM State Space Representation Messages, Status and Plans
Schönemann E, Becker M, Springer T (2011) A new approach for GNSS analysis in a multi-GNSS and multi-signal environment. Journal of Geodetic Science 1:204–214
Schumann S (2014) Why we’re mapping down to 20 cm accuracy on roads. In: HERE 360. http://360.here.com/2014/02/12/why-were-mapping-down-to-20cm-accuracy-on-roads/
Seepersad G (2012) Reduction of initial convergence period in GPS PPP data processing. MSc Thesis, York University
Seepersad G, Aggrey J, Bisnath S (2017) Do We Need Ambiguity Resolution in Multi-GNSS PPP for Accuracy or Integrity? In: Proceedings of the 30th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2017). pp 2204–2218
Seepersad G, Banville S, Collins P, et al (2016) Integer satellite clock combination for Precise Point Positioning with ambiguity resolution. In: Proceedings of the 29th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2016), Portland, OR. pp 2058–2068
Seepersad G, Bisnath S (2013) Integrity Monitoring in Precise Point Positioning. In: Proceedings of the 26th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2013). pp 1164–1175
Seepersad G, Bisnath S (2014a) Challenges in Assessing PPP Performance. Journal of Applied Geodesy 8:205–222
Seepersad G, Bisnath S (2017) An assessment of the interoperability of PPP-AR network products. The Journal of Global Positioning Systems 15:4. doi: 10.1186/s41445-017-0009-9
Seepersad G, Bisnath S (2015) Examining the Interoperability of PPP-AR Products. In: Proceedings of the 28th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2015),Tampa, Florida. pp 2845–2857
Seepersad G, Bisnath S (2014b) Reduction of PPP convergence period through pseudorange multipath and noise mitigation. GPS Solutions 19:369–379. doi: 10.1007/s10291-014-0395-3
Shi J (2012) Precise point positioning integer ambiguity resolution with decoupled clocks. PhD Thesis, University of Calgary
Shi J, Gao Y (2014) A Troposphere Constraint Method To Improve PPP Ambiguity-Resolved Height Solution. Journal of Navigation 67:249–262. doi: 10.1017/S0373463313000647
Springer T, Beutler G (1993) Towards an official IGS orbit by combining the results of all IGS Processing Centers. In: Proceedings of the 1993 IGS Workshop, held March. pp 24–26
Sturza MA (1988) Navigation system integrity monitoring using redundant measurements. Navigation 35:483–501
Takasu T, Yasuda A (2009) Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. In: international symposium on GPS/GNSS. International Convention Centre Jeju, Korea, pp 4–6
Teunissen P, Joosten P, Tiberius C (2002) A comparison of TCAR, CIR and LAMBDA GNSS ambiguity resolution. In: ION GPS. pp 2799–2808
Teunissen PJ (1998) Success probability of integer GPS ambiguity rounding and bootstrapping. Journal of Geodesy 72:606–612
Teunissen PJ, Kleusberg A (2012) GPS for Geodesy. Springer Science & Business Media
Teunissen PJ, Odijk D, Zhang B (2010) PPP-RTK: Results of CORS network-based PPP with integer ambiguity resolution. Journal of Aeronautics, Astronautics and Aviation, Series A 42:223–230
Teunissen PJG (2005) Integer aperture bootstrapping: a new GNSS ambiguity estimator with controllable fail-rate. Journal of Geodesy 79:389–397. doi: 10.1007/s00190-005-0481-y
Teunissen PJG, Khodabandeh A (2015) Review and principles of PPP-RTK methods. Journal of Geodesy 89:217–240. doi: 10.1007/s00190-014-0771-3
Trimble (2018) Transforming the way the world works. In: Transforming the way the world works. http://www.trimble.com/positioning-services/centerpoint-vrs.aspx. Accessed 4 Feb 2018
Tu R, Ge M, Zhang H, Huang G (2013) The realization and convergence analysis of combined PPP based on raw observation. Advances in Space Research 52:211–221. doi: 10.1016/j.asr.2013.03.005
U.S. Coast Guard Navigation Center (2008) Federal Radionavigation Plan. In: Navigation Center. https://www.navcen.uscg.gov/pdf/2008_Federal_Radionavigation_Plan.pdf
US DoD (2001) Global positioning system standard positioning service performance standard. Assistant secretary of defense for command, control, communications, and intelligence
Van Diggelen F (2009) A-GPS: Assisted GPS, GNSS, and SBAS. Artech House
Wang J, Feng Y (2009) Integrity determination of RTK solutions in precision farming applications. In: Proceedings of the Surveying and Spatial Sciences Institute Biennial International Conference 2009. Surveying and Spatial Sciences Institute, pp 1277–1291
Wang J, Stewart MP, Tsakiri M (1998) A discrimination test procedure for ambiguity resolution on-the-fly. Journal of Geodesy 72:644–653
Wang K, Rothacher M (2013) Ambiguity resolution for triple-frequency geometry-free and ionosphere-free combination tested with real data. Journal of Geodesy 87:539–553. doi: 10.1007/s00190-013-0630-7
Wang Q, Chen Y, Zhao J (2012) Analysis and Modeling of PPP Residuals from GPS and GLONASS. In: Sun J, Liu J, Yang Y, Fan S (eds) China Satellite Navigation Conference (CSNC) 2012 Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 301–308
Wanninger L (2012) Carrier-phase inter-frequency biases of GLONASS receivers. Journal of Geodesy 86:139–148. doi: 10.1007/s00190-011-0502-y
Weber G, Mervart L, Agrotis L, Stürze A (2011) Real-time Combination of GNSS Orbit and Clock Correctors for Precise Point Positioning. In: IUGG General Assembly, June 2011, Melbourne, Australia
Weber G, Mervart L, Lukes Z, et al (2007) Real-time clock and orbit corrections for improved point positioning via NTRIP. In: Proceedings of ION GNSS 20th International Technical Meeting of the Satellite Division, Fort Worth, TX, USA
Wells D, Lindlohr W, Schaffrin B, Grafarend E (1987) GPS design: undifferenced carrier beat phase observations and the fundamental differencing theorem. Frederiction: Department of Surveying Engineering, University of New Brunswick
Wübbena G (2012) RTCM State Space Representation (SSR) Overall Concepts Towards PPP-RTK. PPP-RTK & Open Standards Symposium, March 12-13 2012, , Frankfurt, Germany
Wübbena G, Schmitz M, Bagge A (2005) PPP-RTK: precise point positioning using state-space representation in RTK networks. In: Proceedings of ION GNSS. pp 13–16
Wuhan University (2017) School Of Geodesy and Geomatics,Wuhan University. In: Wuhan University. http://en.sgg.whu.edu.cn/. Accessed 19 Aug 2017
Yao Y, Zhang R, Song W, et al (2013) An improved approach to model regional ionosphere and accelerate convergence for precise point positioning. Advances in Space Research 52:1406–1415. doi: 10.1016/j.asr.2013.07.020
Zhang B, Teunissen PJG, Odijk D (2011) A Novel Un-differenced PPP-RTK Concept. The Journal of Navigation 64:S180–S191. doi: 10.1017/S0373463311000361
Zhang X, He X (2015) BDS triple-frequency carrier-phase linear combination models and their characteristics. Science China Earth Sciences 58:896–905
Zumberge JF, Heflin MB, Jefferson DC, et al (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth (1978–2012) 102:5005–5017